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Simultaneous Optimization as a Method to Establish
Generalized Functional Forms for Empirical
Equations of State1

R. Span,2, 3 H.-J. Collraann,2 and W. Wagner2

A new algorithm for the optimization of functional forms of empirical equations
of state is presented which considers data sets of different substances
simultaneously. In this way, functional forms for empirical equations of state
can be developed which yield, on average, the best representation of the thermo-
dynamic properties of all substances within larger groups of substances (e.g.,
"nonpolar" and "polar" substances). The new algorithm is being used to develop
a new class of empirical equations of state which meet typical technical
requirements on the accuracy of thermodynamic properties with only about 10
fittable coefficients. The first results for nonpolar fluids are reported.
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argon; oxygen.

1. INTRODUCTION

Since about 1980, the efficiency of highly accurate wide-range equations of
state has improved tremendously. These improvements are closely linked to
the development of sophisticated optimization algorithms [1-4] which
determine the most suitable mathematical form of an equation of state by
selecting the best combination of terms4 from a so-called "bank of terms";
such a bank of terms is an extensive mathematical set up which contains

1 Paper presented at the Thirteenth Symposium on Thermophysical Properties, June 22-27,
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4 Empirical equations of state are usually formulated as a summation over different mathe-

matical expressions with one fittable coefficient each. The word "term" refers to one of these
mathematical expressions.
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all terms considered to be useful for the description of the problem. In com-
parison to equations established by trial and error, optimized equations of
state need about 30 to 50 % fewer terms to achieve the same accuracy and
they yield better results when extrapolated either beyond the limits of the
data set used to set up the equation [5] or into regions where no reliable
data have been available.

Unfortunately, extensive data sets are needed to optimize the mathe-
matical structure of an equation of state, and when such optimized equations
are fitted to data of another substance, they often lose their advantages
since their functional form is constrained to the substance for which it was
developed. Therefore, optimized empirical equations of state have so far
been available for only about 20 substances.

The new optimization algorithm presented here has been developed to
overcome these limitations. The simultaneous use of data sets of different
substances in an optimization algorithm results in the functional form,
which yields on average the best results for all considered substances. If the
considered substances are representative for a group of substances (e.g., the
group of "nonpolar" fluids), the resulting formulation can be fitted to
limited data sets of other substances out of this group without significant
loss of accuracy. Currently the new simultaneous optimization procedure is
used to establish a new class of simple equations of state with about 10
fitted coefficients, which are designed to describe broad groups of sub-
stances accurately enough for most technical applications. The first results
from this project are given to illustrate the potential of simultaneous opti-
mization algorithms.

2. THE SIMULTANEOUS OPTIMIZATION ALGORITHM

The simultaneous optimization algorithm presented here is essentially
based on the optimization algorithm by Setzmann and Wagner [4]. This
algorithm combines deterministic elements from the well known stepwise
regression analysis [1], such as adding, deleting, and exchanging terms,
with elements from the evolutionary optimization method [3], such as
mutation and optimization of a "population" of equations. In order to
shorten the description of the new algorithm, the paper of Setzmann and
Wagner [4] is referred to wherever elements of the procedure remained
unchanged. The present paper deals only with the application of
simultaneous optimization to empirical equations of state; nevertheless, the
new algorithm can be applied to completely different problems as well.

For the optimization algorithm of Setzmann and Wagner [4] and for
the new simultaneous optimization algorithm, Fig. 1 shows the main steps
of the development of an equation of state. With respect both to data and
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Fig. 1. Main steps in the development of an equation of state using either the
well-known algorithms for individual optimization or the new algorithm for
simultaneous optimization.

to constraints, the construction of the regression matrix is identical to the
procedure described in Ref. 4. The residuals which are necessary to set up
a regression matrix for an equation of state in the form of the reduced
Helmholtz energy are given, e.g., in Refs. 6 and 7. Examples of typical
banks of terms are given in Refs. 6-8. For simultaneous optimization,
reduced variables T = TC/T and 8 = p/pc should be used in the bank of
terms for all substances in order to make use of a simple corresponding
states similarity for the functional form of the equation. All regression
matrices which are set up for simultaneous use have to be based on the
same bank of terms since the optimization algorithm identifies terms only
by their position in the bank of terms.

Figure 2 shows a flowchart of the optimization algorithm of Setzmann
and Wagner as given in Ref. 4. The general structure of this procedure
remains unchanged. In step 2, the initial set of equations in the "popula-
tion" is determined by repeated random selection of terms. In this step, a
quality criterion is needed in order to determine the best formulations,5

5 Here the expression "formulation" refers to the combination of terms which is considered in
the current stadium of the optimization process. The best formulation becomes the func-
tional form of an equation of state when the results are saved to a file after the optimization
procedure is finished.
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Fig. 2. Flowchart of the optimization algorithm of Setzmann
and Wagner [4].
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which form the starting population. In the algorithm of Setzmann and
Wagner, this quality criterion is the sum of squares x2, which can be
calculated from the regression matrix considering only those terms from
the bank of terms which are part of the current formulation. In the
simultaneous optimization procedure, the corresponding sum of squares xi2

has to be calculated from each of the / regression matrices used, whereby
each of the regression matrices represents the data set of one of the /
considered substances. Equivalent to x2 the quality criterion could now be
defined as

In Eq. (1), extensive data sets of well-measured substances which result in
high values for x2i have an exaggerated influence on the quality criterion
even if the representation of the data is satisfactory. To avoid this problem
in the simultaneous optimization, the sums of squares x2i are reduced by
reference sums of squares, x2

0,i, resulting from equations of state of the
same length, which are optimized individually for the corresponding sub-
stance. Thus, in the simultaneous optimization the reduced sum of squares
of substance i, xi*2 = xi2/x2

0,i, becomes 1 if the current formulation describes
the data set as well as the equation of state optimized individually. With
these reduced sums of squares, the quality criterion of the simultaneous
optimization, X*2, is defined as

The formulations chosen in the initialization process, step 2 in Fig. 2, are
those with the minimum values for X*2.

When the starting population is determined, the process continues
with step 3, "mutation." In this step, terms from the current formulations
are randomly exchanged for other terms from the bank of terms (see
Ref. 4). The quality criterion of the "mutant" is determined in the same way
as described above. The old formulation is replaced by its mutant if
Y*2 < X*2

A mutant ̂ X *2 old •
In step 4, the modified regression analysis incorporated in the algo-

rithm of Setzmann and Wagner [4] starts with the selection of the initial
terms, which has not been changed in the new procedure. In order to add
the most important term in step 6, the quality criterion has to be calculated
for all J terms from the bank of terms which have not yet been included
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in the current formulation. When adding the term j, the sum of squares xi2
resulting from the regression matrix i becomes

where b corresponds to an element of the two-dimensional regression
matrix and L is the bottom row of the matrix (see Ref. 4). If all / values
xi2,new,j are determined, the quality criterion for adding the termy, X*2 new,j,
can be calculated according to Eq. (2). The term which yields the smallest
value of .X*2new,j is actually inserted into the formulation. To do so, all /
regression matrices have to be transformed according to the instructions
given in Table I of Setzmann and Wagner [4].

After adding a term, the mutation procedure (step 7) is repeated and
statistical tests are applied to test the significance of the terms in the for-
mulation (Student t test; see Ref. 4) and of the entire formulation (Fisher
F test; see Ref. 4). Although these tests are formally valid only for a single
data set, the average values of the statistical probabilities calculated from
the / considered regression matrices can be used as criteria for the statisti-
cal tests in the simultaneous optimization procedure.

If the Student t test shows that a term in the current formulation
yields no significant contribution, this term is removed by transformation
of all / regression matrices according to the instructions given in Table I
of Setzmann and Wagner [4]. If the formulation as a whole satisfies the
conditions of the F test, the next term is added. If not, it is tested whether
the formulation can be improved by exchanging any of the terms in it for
any other term from the bank of terms. Therefore, the quality criterion
X*2exkJ has to be determined for every possible exchange of one of the K
terms in the formulation (index k) against one of the J terms (index j)
which are not contained in the formulation. The required values x*x,kj,tcan

be calculated according to Table II in Ref. 4. The exchange with the
smallest value for X*^kj is carried out by deleting the term k and adding
the term j (see above), if X*^k]<X*\A. If the step "exchange of a term" is
successful it is repeated until X*2 cannot be improved further by an
exchange of terms. If it is not successful, the F test is applied again to test
the significance of the formulation as a whole. The next term is added if the
formulation now copes with the F test. If it fails again, no further improve-
ment is possible and the procedure continues with step 5 for the next for-
mulation. When the predetermined number of regression runs has been
carried out, the best results replace the poorest formulations in the popula-
tion (see Ref. 4) and the optimization process continues with step 3 for the
next generation until either a predetermined number of generations is
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finished or all formulations in the population are the same. The best for-
mulation in the last generation is regarded as the functional form which
yields on average the best representation of the / considered data sets.

Constraints are dealt with as described in Ref. 4, except for the fact
that the combination of removing terms and adding constraints has to be
applied to all / regression matrices

3. FIRST RESULTS

As a first test for the new optimization algorithm, simple correlation
equations for properties at saturation were developed for groups of non-
polar and polar substances. For this simple application the functional
forms resulting from the simultaneous optimization were superior to the
functional forms resulting from the algorithm of Setzmann and Wagner
[4] with regard to the average reduced sum of squares y*2 — X*2/I, where
/ is the number of data sets considered. This result was found for both
the substances used in the simultaneous optimization and the substances
used only for comparison. Thus, the functional forms resulting from
simultaneous optimization show the expected advantages when they are
fitted to data sets of other substances belonging to the same group.

As a second test, short equations of state were developed for argon,
methane, and oxygen while, at the same time, data sets were set up for 11
other non- or almost nonpolar fluids ranging from nitrogen to n-octane.
To meet the accuracy requirements of typical technical applications, the
following objectives were defined: Aplp^ ±0.2 to +0.3% for p<30MPa
and T<473 K, A p/p < ± 0.5% for p ̂  100 MPa, and Ap/p ^ ±0.2 to ±0.3%
in the extended critical region, and Ay/y ^ ± 1 to ± 2 % for caloric proper-
ties for p =S 100 MPa, except for the extended critical region.

These objectives correspond roughly to the uncertainty of typical
Bender-type [9] equations of state, which describe the residual contribu-
tion to the pressure with 19 terms, and can be met by individually
optimized equations of state with 8 or 9 terms.

For the residual part of the reduced Helmholtz energy OL* = ar/(RT) of
argon, methane, and oxygen, the simultaneous optimization procedure
resulted in the functional form

where 5 is the reduced density p/pc, T is the inverse reduced temperature
TJT, and R is the gas constant. The substance specific parameters of
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Table I. Coefficients and Substance-Related Parameters of the Simultaneously Optimized
Equations of State, Eq. (4), for Argon, Methane, and Oxygen

i

\
2
3
4
5
6
7
8
9

T C ( K )
pc ( k g - r n - 3 )

/ J ( k J . k g - ' . K - ' )

Argon

1.610871306
-2.634808041

0.083409612
0.000048431
0.202060214

-0.038855616
-0.121023480
-0.020548449

0.001466681

150.687
535.6

0.2081333

ni

Methane

1.659011608
-2.694111307

0.082946554
0.000048633
0.211420114

-0.036942268
-0.129924031
-0.019663974

0.001226884

190.564
162.66

0.5182705

Oxygen

1.669490380
-2.711382338

0.086374356
0.000045263
0.229512622

-0.041004268
-0.123006016
-0.021244360

0.001396158

154.595
436.14

0.2598382

Fig. 3. Tolerance diagram for densities calculated from the
simultaneously optimized equation of state, Eq. (4), applied to
methane.
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Eq. (4) are given in Table I. The expressions required to calculate ther-
modynamic properties from an equation of state formulated in or can be
found, e.g., in Refs. 6 and 7. As an example, Fig. 3 shows the uncertainty
of thermal properties for methane calculated from Eq. (4). The uncertain-
ties for argon are slightly lower and those for oxygen are slightly higher
especially close to the melting line; the objectives formulated above are
basically met for all three substances.

Table II gives a comparison which is based on average reduced sums
of squares x*2 = X*2 / I for the three substances used to develop Eq. (4) and
for all nonpolar substances for which the data sets have been completed in
the meantime. The reference sums of squares xl. i result from equations
with nine terms individually optimized for each of the 14 substances. On
average, the simultaneously optimized equation yields better results than
the equations individually optimized for argon, methane, and oxygen both
for the substances used to develop the equation (/*-3,sim = 1.49, £*_2

3iarg =
2.41, /t2

3ime, = 2.02, and rf_\oxy = 6.76) and for all substances (/T-i4,sim =
8.10, X*-H, arg = 10.80, x*!-i4, met = 21.66, and *t214, oxy = 11.71). Nevertheless,
it is obvious that argon, methane, and oxygen are not representative for the

Table II. Reduced Sums of Squares /*2 Resulting from Fitting the Simultaneously
Optimized Functional Form, Eq. (4), and the Functional Forms Individually Optimized for

Argon, Methane, and Oxygen to Data Sets of all Nonpolar Substances Considered

Substance

Argon
Methane
Oxygen

X*2 for functional forms optimized

(a

-0.002
0.011
0.022

Average value % *_?3

Nitrogen
Ethylene
Ethane
Propane
Isobutane
n-Butane
Cyclohexane
n-Pentane
n-Hexane
n-Heptane
n-Octane

0.037
0.087
0.099
0.153
0.185
0.200
0.209
0.251
0.308
0.350
0.391

Average Value x*-14

Simultaneously

2.09
1.00
1.39

1.49

1.00
10.84
5.09
9.70

10.23
17.65
13.05
13.83
14.26
9.21
4.04

8.10

For argon

1"
2.43
3.81

2.41

1.42
12.84
7.60

13.49
11.39
25.85
16.81
17.40
17.55
13.85
5.74

10.80

For methane

2.04
r
3.03

2.02

2.44
27.57
14.10
22.15
14.90
68.38
34.06
27.63
33.03
23.08
29.86

21.66

For oxygen

12.99
6.28
1"

6.76

6.26
3.05
5.21
9.63
5.28

22.67
27.95
14.67
22.68
15.85
10.46

11.71

" Reference equation used to determine xl for the corresponding substance.
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group of nonpolar fluids considered here. Until now, the best functional
form with nine terms which has been optimized for a more representative
set of five substances has resulted in an average reduced sum of squares of
X*-i4 = 2.55. A satisfactory description of all substances can be achieved if
1 more term is added; a preliminary functional form with 10 terms has
resulted in x*-u = 1 -67. Such equations should be applicable at least for all
nonpolar pure fluids with an accentric factor of w> = 0.4 but the work on
this topic has not yet been completed. Fitted to the same data sets, the
Bender equation with 19 terms yields xi*1-3, Ben = 3.02 and x*-i4, Ben = 2.28.
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